
 Improve the Raspberry Pi 4 BSP 
 Google Summer of Code Program 2023 Project Proposal 

 Utkarsh Verma 
 utkarsh@bitbanged.com 

 Indian Institute of Information Technology, Design and Manufacturing - 
 Kancheepuram 
 Chennai, India 

 Project Abstract 
 The  existing  support  for  Raspberry  Pi  SBCs  in  RTEMS  is  operational,  but  it  lacks 
 essential  functionalities  such  as  graphics  support,  USB,  SD  card,  UART,  I2C  and  SPI 
 functionality,  which  are  necessary  for  basic  user  requirements.  To  address  this 
 gap,  this  project  aims  to  incorporate  these  controllers  into  the  Raspberry  Pi  4 
 (Model B) board-specific package within RTEMS. 

 Project Scope 
 Large (approx 350 hours) 

 Project Description 
 The  objective  of  this  project  is  to  improve  the  "raspberrypi4b"  BSP's  functionality 
 in RTEMS by including support for critical features such as: 

 ●  SD card R/W access 
 ●  GPIO,  UART,  SPI,  and  I2C  drivers  for  interfacing  with  sensors  or  other 

 peripherals 
 ●  Graphics framebuffer support without using libbsd 

 The  current  BSP's  inability  to  support  these  basic  features  limits  its  effectiveness 
 in  the  embedded  field.  The  successful  implementation  of  these  drivers  would 
 significantly  expand  the  capabilities  of  RTEMS  on  the  Raspberry  Pi  4B  and  open 
 numerous doors for its use in the embedded industry. 

 Project Deliverables 
 ●  May 29 (Coding begins)  : 

 I  intend  to  first  implement  in-system  programming  support  for  the 
 Raspberry  Pi  and  optimize  my  hardware  and  software  development 
 workflow. 

mailto:utkarsh@bitbanged.com


 ●  July 10-14 (Midterm evaluation)  : 
 By  the  midterm  evaluation,  I  will  have  fleshed-out  support  for  I2C,  SPI  and 
 SD  card  R/W  access  in  the  BSP.  I2C  and  SPI  will  be  tested  with  a  ping-pong 
 using  a  slave  device  with  the  RPi  as  the  master.  For  the  SD  card,  the  test 
 can be as simple as saving some data to a sector and accessing it later. 

 ●  August 21 - 28 (Final evaluation)  : 
 By  the  final  evaluation,  I  plan  to  finalize  support  for  the  graphics  frame 
 buffer  in  the  BSP.  It  will  be  tested  by  having  the  RPi  display  a  sample  image 
 on an HDMI screen. 

 ●  Post GSoC  : 
 While  my  time  with  RTEMS  may  be  reduced  after  GSoC  due  to  higher 
 education  plans,  I  would  still  like  to  remain  a  part  of  the  community  and 
 participate  in  discussions  on  the  forums.  I  am  passionate  about  firmware 
 development and intend to contribute as much as possible in the future. 

 Proposed Schedule 
 Application period (Mar 20 - Apr 4): 

 ●  Gain familiarity with the codebase and clarity about the project. 
 ●  Explore the current status of the BSP on the RPi. 
 ●  Iron  out  the  proposal  and  get  feedback  from  prospective  mentors  about 

 the project. 

 Acceptance waiting period (Apr 4 - May 4): 
 Currently,  I  have  been  able  to  run  RTEMS  on  my  RPi  4  board  with  the  following 
 setup. I’ve used Arduino Nano as a serial adapter for now with a level shifter. 

 However,  I  would  like  to  build  upon  the  existing  debugging  workflow  and 
 implement  in-system  programming  (ISP)  on  the  RPi.  This  will  likely  be  a 
 collaborative effort with another RPi BSP developer. 

 During  this  period  I  would  solely  focus  on  researching  possible  approaches,  a  few 
 of which are listed below: 



 ●  One  option  is  to  go  with  U-Boot.  It  will  expose  a  shell  over  UART  which  we 
 could  potentially  utilize  for  uploading  the  RTEMS  kernel.  The  baud  rate 
 would  be  115.2  Kbps  which  is  reasonable  enough  for  the  small-sized  RTEMS 
 kernel. 

 ●  The  other  option  is  to  use  JTag  through  the  SWD.  The  FT232H  might  be  a 
 good  choice  since  it  has  UART,  SPI,  and  I2C.  This  method  was  used  in  last 
 year’s  GSoC  project  at  RTEMS.  Still,  research  needs  to  be  done  on  various 
 JTag debugger options based on cost and speed. 

 Community bonding period (May 4 - May 28): 
 ●  Based  on  my  findings,  I  will  start  working  towards  the  ISP  implementation 

 for the board. 
 ●  I  will  explore  the  current  status  of  Arasan’s  sdhci  implementation  in 

 RTEMS-libbsd with respect to the RPi 4 BSP. 
 ●  I  will  also  look  into  the  existing  frame  buffer  implementations  within 

 RTEMS. 

 First half (May 29 - Jul 14): 
 I  will  be  majorly  focusing  on  adding  support  for  basic  peripherals  to  the  BSP  and 
 then  finally  the  SD  card  read/write  access,  which  would  be  taking  a  major  chunk 
 of  time.  For  specifying  the  peripheral  hierarchy,  I  will  be  using  flattened  device 
 trees  (FDT).  This  would  be  a  more  readable  approach  than  the  current  method  of 
 defining addresses as macros. 

 ●  GPIO: 
 ○  Define  the  GPIO  interfaces  provided  by  the  board  as 

 ̀ rtems_gpio_pin_conf` structs. 
 ○  Write basic GPIO utility functions to access/modify the pin state. 

 ●  UART: 
 The  BSP  already  supports  transmitting  over  the  PL011-based  UART0  or 
 “/dev/ttyS0”  port.  However,  the  additional  four  UART  ports  on  the  RPi  4  are 
 not supported yet. Here is how I will implement support for these: 

 ○  Explore  the  arm-pl011  driver  in  the  RTEMS  tree  and  implement  Rx 
 support for UART0. 

 ○  Write  a  driver  for  miniUART  to  allow  accessing  UART1.  This  would 
 involve  figuring  out  which  addresses  in  memory  its  registers  are 
 mapped to and defining functions to access/modify them. 

 ○  Generalize  existing  console  implementation  to  fetch  hardware 
 metadata  from  the  device  tree.  This  would  allow  users  to  easily  swap 
 between different UART ports, with the same code. 

 ●  SPI: 
 ○  Add  support  for  interrupts  to  allow  handling  of  SPI  interrupts  raised 

 by the board. 
 ○  Leverage  the  RTEMS  port  of  Linux’s  spi-bus  API  and  define  functions 

 to  configure  the  SPI  controller.  For  example,  configuring  the  clock, 
 master/slave operation etc. 



 ○  Test  bi-directional  transfers  and  look  into  support  for  write-only 
 devices which the RPi 1 BSP doesn’t support. 

 ●  I2C: 
 ○  Leverage  the  RTEMS  port  of  Linux’s  i2c-bus  API  and  define  functions 

 to configure the peripheral, just like SPI. 
 ○  Write interrupt handlers for the I2C communications. 
 ○  Test 10-bit addressing with an Arduino slave with bit-banged I2C. 

 ●  SD card driver: 
 RTEMS  already  has  support  for  the  sdhci  driver,  and  the  RPi  1  BSP  has  initial 
 support  for  it,  but  it  does  not  implement  SD  card  interrupts.  Here  is  how  I 
 will approach the development: 

 ○  Gain  familiarity  with  the  SD/MMC  protocol  and  the  host  controller 
 hardware and software interface. 

 ○  Determine the block size, transfer speed, and command set. 
 ○  Implement  the  command/response  functions  for  the  driver  based  on 

 the SD card specification. 
 ○  Implement  the  block  transfer  functions  for  the  driver,  which  should 

 read and write blocks of data to/from the SD card. 
 ○  Refer  to  other  SD  card  drivers  (e.g.  Linux’s  sdhci)  and  make 

 improvements.  The  SD  card  spec  is  not  fully  open.  Hence,  this  step 
 will be crucial for ensuring compatibility. 

 ○  Test and debug. 

 Second half (Jul 14 - Aug 28): 
 The  second  half  would  be  completely  dedicated  to  writing  a  non-libbsd  frame 
 buffer  driver  for  the  RPi  4  BSP.  There  are  implementations  in  the  RTEMS  tree  and 
 one  in  the  ARM  BSP  for  Raspberry  Pi  1,  both  of  which  would  serve  as  great 
 references. Here is how I plan to develop the driver: 

 ●  Develop  a  driver  for  the  mailbox  peripheral  to  get  IO  access  to  the 
 VideoCore multimedia processor on the RPi. 

 ●  Fix  a  target  display  size  of  1024x768  with  32-bit  depth,  and  allocate  memory 
 accordingly for a double-buffered frame buffer. 

 ●  Using  the  SD  card  driver,  get  preprocessed  data  from  it,  and  render  it  onto 
 the display. This can also be done for playing a video. 

 ●  Implement basic font rendering using a cached bitmap of the glyphs. 

 Future improvements 
 A  driver  for  the  VL805  USB  controller  on  the  RPi  could  be  ported  to  RTEMS.  This 
 would  enable  implementing  support  for  RTEMS’  console  over  HDMI.  It  would  be  a 
 nice extension of the frame buffer support. 

 Apart  from  that,  DMA  transfers  for  I2C,  SPI,  and  SD  card  drivers  would  be  a  nice 
 addition as well. 



 This  BSP  could  also  potentially  be  extended  to  support  Raspberry  Pi  Compute  4 
 module,  which  is  pretty  similar.  With  the  newly-added  support  for  peripheral  bus, 
 I could open the doors of industrial usage for RTEMS. 

 Continued involvement 
 While  I  will  try  to  put  my  best  efforts  into  pushing  bug-free  drivers  upstream,  in 
 reality,  some  bugs  do  get  through.  Therefore,  I  will  take  charge  of  maintaining  the 
 drivers that I develop even after the internship ends. 

 Conflict of interest or commitment 
 I  will  not  be  having  any  commitments  during  the  internship  period  which  will 
 allow me to direct my complete attention to this project. 

 Eligibility 
 Yes 

 Major challenges foreseen 
 Implementing  a  robust  driver  for  the  SD  card  could  turn  out  to  be  a  bit 
 challenging  because  the  specification  is  not  fully  open.  Hence  it  usually  boils 
 down  to  some  guess-work  or  reverse  engineering  existing  implementations  of 
 the well supported drivers. 

 Apart  from  that,  this  would  be  my  first  time  developing  drivers  for  the  RPi  boards. 
 Hence,  being  new  to  the  board,  I  might  end  up  facing  unexpected  delays.  But,  I’m 
 pretty  confident  that  it  will  be  something  I  can  take  care  of  with  my  mentor’s 
 guidance and my prior experience in firmware development. 

 References 

 RTEMS 
 https://devel.rtems.org/wiki/GSoC/2015/RaspberryPi_peripherals_and_SD_card 
 https://git.rtems.org/rtems/tree/bsps/arm/raspberrypi 
 https://git.rtems.org/rtems/tree/cpukit/include/rtems/framebuffer.h 

 Others 
 linux/mmc_spi.c at master · torvalds/linux · GitHub 

https://devel.rtems.org/wiki/GSoC/2015/RaspberryPi_peripherals_and_SD_card
https://git.rtems.org/rtems/tree/bsps/arm/raspberrypi
https://git.rtems.org/rtems/tree/cpukit/include/rtems/framebuffer.h
https://github.com/torvalds/linux/blob/master/drivers/mmc/host/mmc_spi.c


 Kingston microSDXC Memory Card Flash Storage Media 
 https://github.com/raspberrypi/firmware/wiki/Mailbox-property-interface 
 ARM: dts: bcm2711: Use bcm2711 compatible for sdhci - Patchwork 

 Blogs 
 Setup OpenOCD with JTAG + UART on raspberry pi 4 using FT232H 
 Loading Linux Images over UART 
 Lecture 12: SPI and SD cards 
 Writing a “bare metal” operating system for Raspberry Pi 4 (Part 4) | rpi4-osdev 
 Writing a “bare metal” operating system for Raspberry Pi 4 (Part 5) | rpi4-osdev 
 The Mailbox Peripheral | Building an Operating System for the Raspberry Pi 
 Raspberry Pi 4 - Device Tree 

 Relevant background experience 
 I  have  extensive  experience  working  on  projects  utilizing  AVR  chips  from  ATmel, 
 using  both  C  and  Assembly  languages.  Additionally,  I  have  recently  started 
 working  with  STM32F7  boards  for  ARM  development  .  These  projects  have  given 
 me a deep understanding of the low-level interfaces present in microcontrollers. 

 I  have  done  a  very  similar  project  with  the  ATmega328P  chip  where  I  interfaced 
 an  SD  card  to  an  OLED  display  over  I2C  to  play  a  video.  It  uses  a  1KB  framebuffer 
 and  I  did  everything  in  AVR  assembly.  Hence,  I  am  pretty  confident  about  this 
 project. I’ve open-sourced that project on  GitHub  . 

 Moreover,  I  have  built  an  8-bit  computer  on  breadboards  ,  which  has  provided  me 
 with  clarity  on  computer  architecture.  As  a  Linux  user  for  over  5  years,  I  have  also 
 gained familiarity with the kernel and developed my software development skills. 
 I believe these experiences would surely help me with this project. 

 Details about my hobby projects can be found  here  . 

 Personal 
 I'm  an  electronics  engineering  student  at  IIITDM  Kancheepuram  in  Chennai, 
 India,  set  to  graduate  in  May.  Since  10th  grade,  I've  built  numerous  hardware 
 projects  and  developed  a  passion  for  exploring  how  technology  works.  Embedded 
 systems  allow  me  to  fully  understand  complex  systems  hands-on,  which  strikes 
 the perfect balance between my interests in electronics and software. 

 When  I  discovered  RTEMS  while  searching  for  GSoC  organizations  in  the 
 embedded  systems  domain,  I  knew  it  was  the  perfect  fit  for  me.  The  opportunity 
 to  write  drivers  for  embedded  systems  aligned  perfectly  with  my  interests  and 
 skills. 

https://www.kingston.com/datasheets/SDCIT-specsheet-64gb_jp.pdf
https://github.com/raspberrypi/firmware/wiki/Mailbox-property-interface
https://patchwork.kernel.org/project/linux-arm-kernel/patch/20200120041740.193485-1-stephen@brennan.io/
https://0xnoor.hashnode.dev/setup-openocd-with-jtag-uart-on-raspberry-pi-4-using-ft232h
https://www.emcraft.com/imxrt1050-evk-board/loading-linux-images-over-uart
http://www.dejazzer.com/ee379/lecture_notes/lec12_sd_card.pdf
https://www.rpi4os.com/part4-miniuart/
https://www.rpi4os.com/part5-framebuffer/
https://jsandler18.github.io/extra/mailbox.html
https://blog.stabel.family/raspberry-pi-4-device-tree/
https://github.com/UtkarshVerma/stm32f7-pio-hal
https://github.com/UtkarshVerma/atmega328p-oled-asm
https://github.com/UtkarshVerma/8-bit-computer
https://utkarshverma.me/#projects


 As  a  self-driven  and  tenacious  individual,  I  have  honed  my  skills  through  various 
 personal  projects,  and  I  am  confident  in  my  ability  to  make  meaningful 
 contributions  to  the  RTEMS  project.  I  am  highly  motivated  to  take  on  this  GSoC 
 opportunity and excited about the potential impact I can make. 

 Experience 

 Free software experience 
 My  first  encounter  with  FOSS  was  during  Google  Code-in  back  when  I  was  in  11th 
 grade.  Since  then,  I  am  very  grateful  to  FOSS  and  the  community  in  general.  The 
 open  nature  of  these  projects  has  taught  me  a  lot  about  coding  and 
 problem-solving  approaches.  Hence,  I  am  highly  motivated  to  give  back  to  the 
 FOSS  community,  and  I  have  done  so  through  various  contributions,  a  few  of 
 which are: 

 ●  dense-analysis/ale: Add support for AVRA linting 
 ●  fairyglade/ly  : 

 ○  Make xinitrc path configurable 
 ○  Use XDG_RUNTIME_DIR for storing Xauthority 

 ●  jarun/nnn: Allow specifying preview width 
 ●  gohugoio/hugoDocs: Add docs for shimming JS libraries 

 Language skill-set 
 I  prefer  coding  in  statically-typed  languages  as  it  helps  a  lot  in  systems 
 programming.  Here  are  the  languages  I  currently  know,  listed  in  decreasing  order 
 of experience: 

 ●  C (Intermediate) 
 ●  AVR Assembly (intermediate) 
 ●  Shell scripting (intermediate) 
 ●  Go (intermediate) 
 ●  Python (intermediate) 
 ●  HTML, JS, CSS (intermediate) 
 ●  Rust (Beginner) 
 ●  Verilog (Beginner) 

 Apart  from  these  languages,  I  like  using  Makefiles  to  build  my  embedded  projects 
 and I am also pretty comfortable with them. 

 Work experience 
 I  have  worked  on  three  internships  to  date,  during  my  Bachelor’s  degree,  which 
 are listed below in chronological order: 

https://github.com/dense-analysis/ale/pull/3950
https://github.com/fairyglade/ly/
https://github.com/fairyglade/ly/pull/393
https://github.com/fairyglade/ly/pull/330
https://github.com/jarun/nnn/pull/1429
https://github.com/gohugoio/hugoDocs/pull/1246


 ●  Embedded Systems Intern @ Dextroware Devices, India: 
 ○  Worked on a wireless USB input device called Mouseware 
 ○  Wrote firmware for the transceivers and designed schematics 

 ●  Research Intern @ GSI Helmholtz Centre for Heavy Ion Research, Germany: 
 ○  Worked  on  improving  the  accuracy  of  the  FPGA-based  data 

 acquisition system in the lab 
 ○  Wrote  a  command-line  tool  to  efficiently  and  quickly  perform  the 

 analysis. 
 ●  Embedded Systems Intern @ Aerospace Engineers, India: 

 ○  Tasked with integrating sensors in their AUV’s embedded stack 
 ○  Wrote  the  firmware  for  the  STM32  boards  using  STM32  HAL  with  a 

 custom build system using Make. 

 Web URLs 
 Personal website:  https://utkarshverma.me 
 Blog:  https://bitbanged.com 
 Discord - Barusu#4230 
 GitHub:  https://github.com/UtkarshVerma 

https://github.com/UtkarshVerma/fit-hpd-gsi
https://utkarshverma.me/
https://bitbanged.com/
https://github.com/UtkarshVerma

